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Abstract

Within the frame of Lagrangian approaches for the prediction of heat transfer in dispersed two-phase flows, a new dispersion
model is proposed which involves correlated stochastic processes to predict the velocity and temperature of a discrete particle along
its path in terms of the instantaneous velocity and temperature of the surrounding fluid element. The dispersion problem is carefully
addressed in taking into account the anisotropy of the flow and the turbulent heat flux resulting from velocity—temperature cor-
relations. The model is used to simulate the behavior of particles suspended in a homogeneous turbulent shear flow. The numerically
predicted correlations between the fluctuating quantities are in perfect agreement with the results of an analytical study by Zaichik
(Phys. Fluids 11 (1999) 1521-1534). A supplementary investigation of the associated effects of non-linear drag and heat transfer is
then proposed. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

Non-isothermal turbulent flows with solid particles or
droplets are encountered in many industrial processes such as
pneumatic conveying, powder drying systems or combustion.
When using the so-called Eulerian-Lagrangian approach to
predict such dispersed two-phase flows, the difficulty is to
simulate as accurately as possible the turbulent fluctuations of
the fluid and their influence on the motion and temperature of
the suspended particles. In fact, it can be observed that the
effect of temperature fluctuations is rarely carefully dealt with
in gas-solid flows. Provided this requirement is satisfied, La-
grangian methods may improve the formulation of the closure
assumptions which are needed to predict heat transfer in tur-
bulent gas—solid flows by means of two-fluid models. For in-
stance, the particle turbulent heat flux components (u;i(?;),
which are generally modelled by introducing a particle tur-
bulent Prandtl number (Han et al., 1991; Kouzoubov et al.,
1997), might be more accurately assessed by using data pro-
vided by Lagrangian investigations.

As regards the question of particle dynamics, the main
problem in developing dispersion models is to numerically
simulate the instantaneous velocity of the fluid surrounding the
discrete particle (the fluid seen by the particle). After several
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pioneering works dedicated to particle dispersion in isotropic
turbulence (e.g., Gosman and loannides, 1981; Ormancey and
Martinon, 1984; Wang and Stock, 1993), Lagrangian methods
for anisotropic turbulence have been suggested by Berlemont
et al. (1990), Zhou and Leschziner (1991, 1997) and Burry and
Bergeles (1993). Unlike such techniques, which involve a
temporal step followed by a spatial step to predict the in-
stantaneous velocity of the fluid seen, the model considered
herein lies on a single first-order stochastic process according
to the integral time scale 7* of the fluid seen by the discrete
particle. The reader is referred to Wang and Stock (1993) or
Pozorski and Minier (1998) who have proposed analytical
expressions of 7* in terms of particle inertia and mean drift
velocity, and to Pétrissans et al. (2000) for additional infor-
mation about the capabilities of the dispersion model, which
can account for the inertia effect, the continuity effect and the
crossing trajectories effect, as well as for the so-called spurious
drift in case of non-homogeneous turbulence (Legg and
Raupach, 1982).

As concerns heat transfer prediction, it is worth mentioning
the Lagrangian simulation of non-isothermal gas—solid flow by
Avila and Cervantes (1995), who have used an eddy-interac-
tion model by assuming equal dynamic and thermal integral
time scales of the fluid. However, the requirement that the
fluctuations must be connected by the given velocity—temper-
ature correlations of the fluid (u},0;) was not taken into ac-
count in their model. Heat transfer predictions in a turbulent
gas—solid pipe flow using an enhanced Lagrangian model were
recently presented by Moissette et al. (2000). The main
objective was to improve the description of the effect of
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Notation

a,by,c,  coefficients used to generate correlated random
variables

Cp drag coeflicient

Cp particle specific heat

d, particle diameter

G, mean velocity gradient

Gy mean temperature gradient

hy particle-to-fluid heat transfer coefficient

k fluid turbulent kinetic energy

my, particle mass

Nuy, particle Nusselt number

Pr Prandtl number

Rey particle Reynolds number based on vk

Re, particle Reynolds number

S, dimensionless mean velocity gradient

So dimensionless mean temperature gradient

T* integral time scale

Ty temperature integral time scale

t time

Ur fluid velocity vector

U, particle velocity vector

ug; fluid velocity component

Up; particle velocity component

X, particle position vector

X streamwise direction

y mean shear direction
z spanwise direction
Greeks
At time step
O¢ fluid temperature
0p particle temperature
Vi fluid kinematic viscosity
14 temperature random disturbance
P¢ fluid density
Pp particle density
T particle dynamic relaxation time
Tp0 Stokesian particle dynamic relaxation time
Tpe effective dynamic relaxation time
Tpo particle thermal relaxation time
Tpo0 particle thermal relaxation time for Nu, = 2
Tpoe effective thermal relaxation time
%is € independent Gaussian variables

; velocity random disturbance
Q, dynamic Stokes number
Qe modified dynamic Stokes number
Q thermal Stokes number
Subscripts and superscripts
() ensemble average
! fluctuating quantity
n quantity at time nAt

turbulence on particles, but also to get as accurate information
as possible about the particle turbulent heat flux components
(u;ﬁ;) . For this purpose, the instantaneous velocity and
temperature fluctuations of the fluid seen by the particles are
simulated by means of specific stochastic processes which
make them satisfy the local value of (u},0;).

The present work is devoted to the validation of such a new
Lagrangian model for heat transfer prediction. The case dealt
with herein is a homogeneous turbulent flow with constant
gradients of mean velocity and temperature. Analytical ex-
pressions of the second-order moments have been given in this
case by Zaichik (1999), according to a theoretical analysis in the
frame of a p.d.f. approach (Zaichik, 1999; Zaichik et al., 1997),
with the assumption that the mean velocity and temperature of
particles are equal to the fluid ones (no external force or heat
source). The model is first thoroughly described, then numerical
results are given and compared to the analytical ones. Finally,
supplementary calculations are devoted to the investigation of
possible non-linear drag and heat transfer effects.

2. Formulation
2.1. Overview of the Lagrangian simulation

Particles are tracked in a homogeneous shear flow with
constant mean temperature gradient by solving the equation of
motion under the assumptions of incompressible fluid and
dilute suspension. Hence, inter-particle collisions are neglected,
as well as the effect of particles upon the fluid flow (one-way
simulation). Moreover, spherical solid particles are considered,
and the only force acting on particles is the drag force (no
gravity).

The dynamic equations are reduced to
dX, du, U;-U,

TR I P m

where X, and U, are the position and velocity of the particle,
Us is the instantaneous local fluid velocity and

4
T = 3Ppdp/ (prCo|Ur — Upll)

is the relaxation time of the particle: 7, is constant if Stokes’
drag law applies (Re, < 1, Re, standing for the instantaneous
particle Reynolds number), otherwise 7, depends on Re;, (non-
linear drag force, see Section 2.3).

In addition, the temperature of each particle is computed
along its trajectory assuming that each particle has a uniform
temperature and that the temperature is sufficiently low to
neglect radiative transfer. Under such assumptions, the energy
balance takes the following form:

do, 0r—10
S _ T )
dt Tpo
where 0, and 0; are the instantaneous temperatures of the
particle and of the fluid seen, respectively, and 1, is the par-
ticle thermal relaxation time, defined by

MpCp

= 3)

Tpo) =
p 2
ndsh,,

which is either constant or varies as a function of Re,, de-
pending on the particle Nusselt number expression used to
estimate /4, (see Section 2.3).

In the following sections, the fluctuating parts of the fluid
velocity and temperature at location X(#) and time 7 are de-
noted by uj(X,?) and 0;(X, ), respectively.

2.2. Dispersion modelling

The instantaneous velocity and temperature fluctuations of
the fluid at each point of the discrete particle trajectory are
simulated by means of appropriate stochastic processes. Using
any available dispersion model to predict the velocity fluctu-
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ations of the fluid at the discrete particle location X,(¢), the
following first-order autoregressive process is used to generate
the fluid temperature fluctuation at time ¢ and location X, ():

At
9:1 = 0;—1 exXp ( T*) + ém (4)

where 0, stands for 0;(X,(nAr),nAt), T; is the temperature
integral time scale of the fluid seen by the particle, and the ¢,
are Gaussian variables with zero mean value and with variance
given by

@ = (1-ew (237 ) ) (s)

from stationarity requirements under quasi-homogeneity
conditions. In case of homogeneous turbulence, such a first-
order time series is consistent with an exponentially decaying
time correlation of the temperature fluctuation 6;(X,(¢),?)
along the particle path.

In order to ensure consistency of the generated temperature
fluctuations with the required values of the velocity—tempera-
ture one-point correlations {uf,60;) of the fluid, the &, have to be
linked with the random terms appearing in the process used to
generate the velocity fluctuation. Let us examine the case
where the velocity fluctuations of the fluid seen by the particle
obey the same kind of first-order stochastic process (consistent
with an exponentially decaying time correlation of the velocity
fluctuation). Introducing u; = uy;(X,(nAt),nAt) and three
Gaussian variables ; , and denoting by 7;* the integral time
scales of the fluid seen, the corresponding time series can be
written as

i =i exp ( - —) Ty, (6)

showing that &, must satisty

= [1-exp (= (- 1) ) o ™)

Moreover, anisotropy can be introduced into the stochastic
process (6) by linking the white noise disturbances v, in order
to satisfy the prescribed values of the Reynolds stresses. From
Eq. (6), we get the conditions to be fulfilled by the covariances:

(W) = [1 ~exp < At(; Tlm (). ®)

A simple procedure to generate such correlated random
numbers is to consider a set of three independent random
variables y; selected from a normal p.d.f. with zero mean and
variance unity, and to build ; as follows:

Vi = bitss ©)

where the coefficients b; are calculated, without loss of gen-
erality, according to

bll :< %>1/27 b12:07 bl3:07
1*b111<‘//‘//1> . (10)
bipby = (Yphy) — banby, =23,
bisbyy = (Yb3) — bsibiy — bnbyp, 1=2,3.

The conditions specified by Egs. (5) and (7) can easily be sat-
isfied by selecting a random number { from a normal p.d.f.
with zero mean and variance unity, and building ¢ by

¢=al+ay, (11)

where the coefficients ¢ and ¢, are obtained from the condi-
tions on (&%) and (&,) according to Egs. (5) and (7):

el = (@), @ = (&)~ ((@w)’). (12)

In the present study, which aims at improving our dispersion

model with regard to heat transfer, this method is applied

to a homogeneous shear flow by taking into account the

fluid Reynolds stress (uf uf. ) and the fluid velocity—tempera-
) xfy , . A

ture correlations (u;0;), (up,0;) (flow direction x, shear

direction ).
2.3. Numerical conditions

In order to compare the results of the proposed dispersion
model with the analytical solution derived by Zaichik (1999),
the flow characteristics are evaluated from the experimental
data of Tavoularis and Corrsin (1981) obtained in a nearly
homogeneous shear flow with constant mean gradients of ve-
locity and temperature:

W) oo (R

1.07 =037
k Tk ’
(u’é} - <u;°xu;‘y> _
£ 0% L= 1)
’ 6’- 9/
) _ 0.59, fur, 0,) —0.45,

(wl) 0p)" " (i) op)
where k = (uju;;) /2 is the turbulent kinetic energy of the fluid.
Accordlng to the assumptions made by Zaichik (1999) in his
quasi-state solution for a homogeneous layer, the velocity and
temperature integral time scales of the fluid seen by the par-
ticles are assumed to be constant and equal to each other, i.e.,
I =T, =T*. The velocity gradient parameter S, =T*G,,
where G, is the mean velocity gradient, is assumed to be equal
to the temperature gradient parameter Sy = (T*4%°/(0/%)"°) Gy,
where Gy is the mean temperature gradient. The dimensionless
time parameters (similar to Stokes numbers) Q, and Q, are
defined by Qu = TP/T*and Q(} = ‘L'pg/TJ.

Numerical calculations are based on the computation of a
large number of particle trajectories through the flow
(2000000 particles are injected). Averaging is performed to
compute statistical quantities such as the particle velocity—
temperature correlations. Initially, particles are uniformly
distributed along a straight line with given length L, in the
direction of the flow gradients (Fig. 1). In order to avoid any
boundary effect, only particles with final position y lying
within the small segment [—L/20,+L/20] are taken into ac-
count to evaluate the statistical quantities. This small test
section, one tenth of the injection length L, is divided into 20
cells of width Ay. For each test, at least 1000 particles have

y A
U .
g )
Particle injection < Test section
(along length L) =7 ” x (length L/A10)
N

Fig. 1. Sketch of the test configuration.
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been observed in each cell of the test section at the end of the
computation. Particle trajectories and temperature are com-
puted by integrating Eqgs. (1) and (2) by means of a first-order
Runge-Kutta method, the fluid fluctuating quantities being
calculated according to the above-presented dispersion model.
For the sake of reliability, a small enough time step is chosen,
namely Af = min(7*/10,1,/10), and the total tracking time is
not less than max(57*, 5t,).

First, computations have been carried out with the as-
sumption that the particle relaxation times 7, and 7, are
constant (i.e., Re < 1 and Nu, = 2) and equal to each other.
Since the velocity and temperature integral time scales are also
equal to each other, the dynamic and thermal Stokes numbers
Q, and Q, are identical. For each value of the gradient pa-
rameter, various tests have been performed for several values
of the particle relaxation times 7, = 7,9, leading to Stokes
numbers Q, = Qy varying between 0 and 10. The turbulent
kinetic energy k and the integral time scale 7* do not affect the
results since all quantities are non-dimensional, therefore they
are fixed to arbitrary values.

Further computations have been performed in the case of
non-linear drag force and heat transfer. In this case, the dy-

namic and thermal particle relaxation times do not remain
constant along the particle trajectory, therefore they have to
be computed at each time step. The relaxation times 7, and 9
depend, respectively, on the particle drag coefficient Cp,
evaluated from the correlation of Morsi and Alexander
(1972), and on the particle Nusselt number Nu,, estimated
from the following commonly used correlation: Nu, =2 +
O.6Reg-5Pr°-33, where Pr is the fluid Prandtl number. Now,
besides the dimensionless gradient parameters S,, Sy and the
Stokes numbers Q,,Qy, another nondimensional parameter
has to be considered, namely Re;, = Vk - d,/vr. This is because
the possible non-linear drag and heat transfer effects are de-
pending on the particle Reynolds number Re, based on the
instantaneous relative velocity, which is not known before
performing the simulation. Since there is no mean drift ve-
locity here (no gravity force), the only characteristic Reynolds
number which can be fixed is Re;, keeping in mind that the
effective average particle Reynolds number will depend on
both Re, and Q,. For small inertia particles, which follow
rather well the fluid fluctuations, the average relative velocity
may be expected to be small compared to vk, therefore
(Re,) < Rey, whereas we may expect (Re,) =~ Re; for very

(e) Ql/

® Q,

Fig. 2. Particle kinetic stresses (a)—(c), heat fluxes (d)—(e) and temperature fluctuation intensity (f). Solid curves are for Zaichik’s analytical results

and symbols are for the present computation.
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Fig. 3. Particle kinetic stresses (a)—(c), heat fluxes (d)-(e) and temperature fluctuation intensity (f) in case of non-linear drag and heat transfer effects.

Solid curves are for Zaichik’s analytical results and symbols are for the present computation. (A) Rey

S,, = S() = 05, (D) Rek = 10 Sl, = S() =1.

heavy particles. The flow characteristics are the same as for
the linear drag case. However, the assumption Q, = @, is now
based on the Stokesian particle relaxation time t,, since the
instantaneous particle relaxation times are not constant along
the particle path. Assuming, as above, S, =Sy, the influence
of Re; can be investigated by comparing the numerical pre-
dictions with the results obtained under the assumption of
linear drag. Computations have been carried out for
S, =8y =0.5and 1, Re; = 10 and 100, and Q, = Q4 ranging
from 1 to 10.

3. Numerical results

Figs. 2 and 3 display the particle kinetic stresses (plots
(a), (b) and (c)), turbulent heat fluxes (plots (d) and (e)) and

10, S, =Sy = 0.5; (e) Re; = 100,

temperature fluctuations (plot (f)) as a function of the par-
ticle Stokes number @, for various values of the gradient
parameter S,. In Fig. 2, comparison is made between Zaic-
hik’s analytical results (solid curves) and the results from the
present Lagrangian model, assuming constant and equal
particle dynamic and thermal relaxation times, according to
Zaichik’s hypothesis. Fig. 2 shows that the proposed dis-
persion model leads to perfect agreement with the analytical
solution for all particle fluctuating quantities. The main
features of the fluid-solid flow, such as the development of
anisotropy in particle r.m.s. velocity (Fig. 2(b)) or the sim-
ilarities between the particle turbulent heat fluxes and par-
ticle kinetic stresses are correctly simulated. It may be
mentioned that Zaichik’s analysis also assumes exponentially
decaying correlation functions for the fluid seen by the
particles, therefore it is not surprising to obtain such a good
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agreement. For detailed analysis of the physical sense of the
whole curves, one will refer to Zaichik (1999), whose theo-
retical investigation has been restricted to constant relax-
ation times, however. It may therefore be interesting to use
the proposed Lagrangian technique in order to assess the
effect of non-linear drag force and heat transfer, which
cannot be taken into account in a rigorous way in analytical
investigations.

Corresponding results are presented in Fig. 3, which illus-
trates the effects of non-linear drag force and Reynolds de-
pendent Nusselt number. Since 7, changes along the particle
trajectory, the particle fluctuating quantities are plotted
against the modified Stokes number ,, based on the effective
particle relaxation time, which is the average relaxation time
defined by

24

Tpe = Tpo CD<R€p> ) (14)
where 1, is the Stokesian particle relaxation time, and Cp is
the drag coefficient at particle Reynolds number (Re,) based
on the particle average relative velocity, computed from the
Lagrangian simulation as (), (uf, — u;i)z)l/ *. In a similar way,
the effective thermal relaxation time is defined by 7p. =
Tp00(2/Nuy) Where 1,4 18 the particle relaxation time assuming
a constant particle Nusselt number (equal to 2), and Nu, is the
Nusselt number at particle Reynolds number (Rep,). It should
be mentioned, however, that 7. and 7. remain close to each
other in the range of (Re,) investigated here, due to the as-
sumption g = Tp. Comparison is made between the cases of
linear drag force and non-linear drag force (with Re, = 10 and
100), for S, =Sy = 0.5 and 1, and 7, /7" ranging from 1 to
10.

For particles experiencing non-linear drag and heat
transfer effects, it can be concluded from the plots in Fig. 3
that the particle kinetic stresses, turbulent heat fluxes and
temperature fluctuation intensity may be approximated in a
satisfactory way by considering the inertia parameters (or
Stokes numbers) 2, and Q4 based on effective relaxation times
depending on the mean relative velocity. However, better
agreement is observed for S, = Sy = 0.5: for larger values of
the gradient parameters, the particle kinetic stresses and heat
fluxes are overestimated, as can be seen from the curves for
S, = Sy = 1. Therefore, the present Lagrangian calculations
confirm that the use of an effective mean relaxation time, as
generally done in Eulerian calculations, allows the non-linear
drag and heat transfer effects to be correctly taken into ac-
count, provided that the velocity and temperature gradients
are not too large.

4. Conclusion and prospects

An improved Lagrangian model for the simulation of
heat transfer in turbulent particulate two-phase flows has
been described and tested by comparing the numerical pre-
dictions with the analytical results in a homogeneous shear
flow. The dispersion model is built in such a way that the
fluid velocity and temperature fluctuations are correlated
according to the prescribed Reynolds stresses and velocity—
temperature correlations. The predicted particle r.m.s. ve-
locities and temperatures, as well as particle kinetic stresses
and turbulent heat fluxes, have been shown to be in perfect
agreement with the theoretical results. The Lagrangian
technique has been used to investigate the effects of non-
linear drag and heat transfer. Extension of the theoretical
expressions by using effective dynamic and thermal relax-
ation times has been shown to be possible in Eulerian cal-

culations, provided that the velocity and temperature
gradients are not too high.

In order to extend the proposed model for non-homoge-
neous turbulence, appropriate expressions of the integral time
scales should be used, as described by Moissette et al. (2000)
for example. Moreover, it must be kept in mind that the
gradient of the fluid r.m.s. velocity must be introduced into
the stochastic process used to generate the fluid velocity, as
done by Pétrissans et al. (2000) in a pipe flow, in order to
avoid the so-called spurious drift effect (Legg and Raupach,
1982).
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